Composition of Functions

A composite function is when one function is plugged in to another function.

Composite Function Notation	In Words	Meaning
$(f \circ g)(x)$ Also written as $f(g(x))$	$f ext{ of } g(x)$	Plug the function $g(x)$ into the function $f(x)$
$(g \circ f)(x)$ Also written as $g(f(x))$	$g ext{ of } f(x)$	Plug the function $f(x)$ into the function $g(x)$

For domain of $(f \circ g)(x)$, find domain of $(f \circ g)(x)$ and g(x)For domain of $(g \circ f)(x)$, find domain of $(g \circ f)(x)$ and f(x)

Example 1: Given functions
$$f(x) = \frac{4}{1-5x}$$
 and $g(x) = \frac{1}{x}$
Find $(f \circ g)(x)$

Step 1: Plug
$$g(x)$$
 into $f(x)$ $f(x) = \frac{4}{1-5x}$ $g(x) = \frac{1}{x}$
 $(f \circ g)(x) = \frac{4}{1-5\left(\frac{1}{x}\right)} = \frac{4}{1-\frac{5}{x}} = \left(\frac{4}{1-\frac{5}{x}}\right) \cdot \frac{x}{x} = \frac{4x}{x-\frac{5x}{x}} = \frac{4x}{x-5}$
 $(f \circ g)(x) = \frac{4x}{x-5}$ (multiply top and bottom by lowest common denominator to simplify complex fraction)

Step 2: Find domain

For $(f \circ g)(x) = \frac{4x}{x-5}$, denominator cannot be zero, so $x \neq 5$. In interval notation, $(-\infty, 5) \cup (5, \infty)$

For $g(x) = \frac{1}{x}$, denominator cannot be zero, so $x \neq 0$. In interval notation, $(-\infty, 0) \cup (0, \infty)$

So combining the domains, the domain is: $(-\infty, 0) \cup (0, 5) \cup (5, \infty)$

Composition of Functions

Example 2: Given the functions f(x) = x + 2 and $g(x) = 4 - x^2$

Find $(f \circ g)(4)$

Method 1: Plug in right to left $(f \circ g)(4)$ This can also be seen as f(g(4))

Step 1: Plug 4 into g(x)

 $g(4) = 4 - (4)^2 = 4 - 16 = -12$ g(4) = -12

Step 2: Plug g(4) into f(x)

$$f(g(4)) = f(-12) = (-12) + 2 = -10$$

Therefore, $(f \circ g)(4) = -10$

Method 2: Find $(f \circ g)(x)$ first, then plug 4 into the result.

Step 1: Plug g(x) into f(x)

 $f(g(x)) = (4 - x^2) + 2 = 4 - x^2 + 2 = 6 - x^2$ (f \circ g)(x) = 6 - x²

Step 2: Plug 4 into $(f \circ g)(x)$

 $(f \circ g)(4) = 6 - (4)^2 = 6 - 16 = -10$

Therefore, $(f \circ g)(4) = -10$

We get the same answer as method 1.

Decomposition of Functions

To decompose a function is to split a function into an "inner" function and an "outer function" Note: There can be several ways to decompose the same function.

Example: Find two functions *f* and *g* such that $(f \circ g)(x) = h(x)$

Given the function: $h(x) = \sqrt{x^3 + 1}$

One option is: $f(x) = \sqrt{x}$ and $g(x) = x^3 + 1$

Since plugging in we get:

$$f(x) = \sqrt{x}$$
 and $g(x) = x^3 + 1$

$$(f \circ g)(x) = \sqrt{x^3 + 1} = h(x)$$

Another option is: $f(x) = \sqrt{x+1}$ and $g(x) = x^3$

Since plugging in we get:

$$f(x) = \sqrt{x+1}$$
 and $g(x) = x^{3}$
 $(f \circ g)(x) = \sqrt{x^{3}+1} = h(x)$