Exponential Functions

Exponential functions have the form $f(x) = b^x$ (note that *x* is in the exponent) where *b* is a positive constant number called the base or growth factor and *x* is a variable.

The general form of an exponential function can also be written as: $f(x) = a(b)^x$ where the *a* represents the y-intercept, which is often called the starting or initial value.

Examples of exponential functions:

$$f(x) = 2^x$$
 $y = 5(1.26)^t$ $g(x) = \left(\frac{1}{3}\right)^{x-1}$ $A = e^{-x}$

Properties of Exponential Functions

For $f(x) = b^x$		Example: $f(x) = 3^x$
Domain:	(−∞,∞)	4+
Range:	(0,∞)	3-
x-intercepts:	None	2-
y-intercepts:	(0,1)	1 (0,1)
Horizontal Asymptote:	y = 0	-3 -2 -1 0 1

Formulas:

	Compounding Period n		
•	Annually		
	Semiannually	2	
ount)	Quarterly		
Juiit)	Monthly	12	
	Daily		
Exponential Growth:			
$y = y_0 e^{kt}$			
Exponential Decay:			
$y = y_0 e^{-kt}$			
-	(unt) Exponent $y = y_0$ Exponent	(compounding Period Annually Semiannually Quarterly Monthly Daily Exponential Growth: $y = y_0 e^{kt}$ Exponential Decay: $y = y_0 e^{-kt}$	(unt) Compounding Period n Annually 1 Semiannually 2 Quarterly 4 Monthly 12 Daily 365 Exponential Growth: $y = y_0 e^{kt}$ Exponential Decay: $y = y_0 e^{-kt}$

-y = 0

2

Log Rules and Properties

$\log x = \log_{10} x$		Examples:
$\ln x = \ln_e x$		$\log 10^2 = 2$
$\log_b 1 = 0$		$\ln e^3 = 3$
$\ln 1 = 0$		
$\log 10 = 1$		$\log_3 1 = 0$
$\ln e = 1$		$\log_5 5^4 = 4$
$\log_b b^x = x$		$\log \frac{1}{1} = \log 5^{-1} = -1$
$b^{\log_b x} = x$		$10g_5 - 10g_5 - 10g_$
Change of base formula:	Example:	$\log_4 16 = \log_4 4^2 = 2$
$\log_a x = \frac{\log x}{\log a}$	$\log_6 5 = \frac{\log 5}{\log 6}$	$7^{\log_7 9} = 9$

Log Rules for Expanding and Condensing Logarithms:

Product Rule:	$\log_a xy = \log_a x + \log_a y$	(multiplication changes to addition)
Quotient Rule:	$\log_a \frac{x}{y} = \log_a x - \log_a y$	(division changes to subtraction)
Power Rule:	$\log_a x^r = r \log_a x \qquad (\text{expo})$	onent moves to the front)

Example 1: Expand the expression $\log_2(x^4y^3)$

$$log_2(x^4y^3) = log_2 x^4 + log_2 y^3$$

= 4 log_2 x + 3 log_2 y

Example 2: Condense the expression into a single logarithm $5 \log_3 x - \log_3 y$

$$5 \log_3 x - \log_3 y = \log_3 x^5 - \log_3 y$$
$$= \log_3 \frac{x^5}{y}$$

Logarithms

Exponential and Logarithmic functions are inverses of each other.

One way to convert between log and exponential is simply rearranging the parts like shown above.

The examples below show the steps to converting by using log properties.

Example 1: Convert to a logarithmic equation: $6^{x} = 28$ Step 1: Take log base 6 of both sides $log_{6} 6^{x} = log_{6} 28$ $log_{6} 6^{x} = log_{6} 28$ log base 6 and 6 cancel each other out $x = log_{6} 28$ Example 3: Convert to an exponential equation: $y = log_{4} 7$ Step 1: Introduce 4 to both sides, raising everything to exponents $4^{y} = 4^{log_{4} 7}$ $4^{y} = 4^{log_{4} 7}$

4 and log base 4 cancel each other out

$$4^{y} = 7$$

Example 2: Convert to a logarithmic equation: $e^x = 20$ Step 1: Take natural log of both sides $\ln e^x = \ln 20$ $\ln e^{x} = \ln 20$ In and *e* cancel each other out $x = \ln 20$

Example 4: Convert to an exponential equation $\ln 12 = 2.4849$ Step 1: Introduce *e* to both sides, raising everything to exponents $e^{\ln 12} = e^{2.4849}$ $e^{\ln'12} = e^{2.4849}$ In and *e* cancel each other out $12 = e^{2.4849}$

Solve Logarithmic Equations

Example: Solve $\log_3(x + 4) + \log_3(x - 4) = 2$

. .

Step 1: Write as a single logarithm

$$\log_3((x+4)(x-4)) = 2$$
$$\log_3(x^2 - 16) = 2$$

Step 2: Cancel the logarithm by converting to exponential form

$$3^{\log_3(x^2-16)} = 3^2$$
 the 3 and log base 3 cancel each other out
 $3^{\log_3(x^2-16)} = 3^2$
 $x^2 - 16 = 9$ add 16 to both sides
 $x^2 = 25$

Step 3: Square root both sides to solve for x

 $\sqrt{x^2} = \pm \sqrt{25} \implies x = \pm 5 \implies x = -5, x = 5$

Step 4: Plug x values into function to determine if any logs are negative or zero

x = -5 gets negative values inside the log, which violates the domain, so

the only solution is x = 5

Solve Exponential Equations

Example: Solve $3^{2x+1} = 4^x$

Step 1: Get x out of the exponent by introducing log or ln to both sides

$$\ln(3^{2x+1}) = \ln(4^x)$$

(2x + 1) ln 3 = x ln 4

Step 2: Simplify to solve for x

distribute $2x \ln 3 + \ln 3 = x \ln 4$ subtract to get terms with x on the same side $-2x \ln 3$ $-2x \ln 3$

 $\ln 3 = x \ln 4 - 2x \ln 3 \qquad \text{factor out } x$

 $\ln 3 = x(\ln 4 - 2\ln 3)$

 $\frac{\ln 3}{\ln 4 - 2\ln 3} = \frac{x(\ln 4 - 2\ln 3)}{\ln 4 - 2\ln 3}$ get *x* by itself by dividing both sides

$$x = \frac{\ln 3}{\ln 4 - 2\ln 3} = -1.35$$