Factoring

Steps of factoring polynomials:

- 1) Look for greatest common factor (GCF)
- 2) Count number of terms
- 3) Determine method of factoring

Greatest Common Factor

Example 1: Factor $2x^4 + 6x^6$ Both terms have a $2x^4$ in common. $= 2x^4(1 + 3x^2)$

Example 2: Factor x(x + 19) + 11(x + 19)

Both terms have (x + 19) in common.

= (x + 19)(x + 11)

(4 terms) Factor by grouping

Example: Factor $2x^2 + 6x^3 + 5x^7 + 15x^8$ Step 1: Group terms into 2 groups of 2 $2x^2 + 6x^3 + 5x^7 + 15x^8$ Step 2: Factor GCF from each group $= 2x^2(1 + 3x) + 5x^7(1 + 3x)$ (the binomials should be the same)

Step 3: Factor out the GCF (the binomial (1 + 3x)) = $(1 + 3x)(2x^2 + 5x^7)$

(3 terms) Factor Trinomials with leading term coefficient of 1 In the form $x^2 + bx + c$

Example: Factor $x^2 - 16x + 55$

Step 1: Look for numbers that multiply to get 55

and add or subtract to get 16.

 $11 \cdot 5 = 55$ and 11 + 5 = 16

Step 2: Right as product of 2 binomials, with x^2 split into x and x

(*x* 11)(*x* 5)

Step 3: Determine signs

To multiply to get a positive 55, both need to be positive or both negative To add to get a negative 16, both should be negative: -11 + -5 = -16= (x - 11)(x - 5)

(3 terms) Factor Trinomial when leading term coefficient is not 1 (AC method) In the form $ax^2 + bx + c$

Example: Factor $5x^2 + 31x + 6$ Step 1: Multiply first and last terms (a) and (c) $5 \cdot 6 = 30$ Step 2: Find numbers that multiplied equal 30 and added or subtracted equal 31 (middle term) $\frac{30}{5 \cdot 6}$ no $2 \cdot 15$ no

 $30 \cdot 1$ yes $30 \cdot 1 = 30 \checkmark$ and $30 + 1 = 31 \checkmark$

Step 3: Create 4 term polynomial, replacing middle term

 $5x^{2} + 31x + 6$ $5x^{2} + __ + __ + 6$ $5x^{2} + 30x + 1x + 6$

Step 4: Factor by grouping

$$5x^{2} + 30x + 1x + 6$$

= 5x(x + 6) + 1(x + 6)
= (x + 6)(5x + 1)

(2 terms) Difference of Squares

 $a^2 - b^2 = (a - b)(a + b)$

Example 1: Factor $36x^2 - 49y^2 = (6x - 7y)(6x + 7y)$

Example 2: Factor $36x^2 + 49y^2$

Cannot factor (PRIME), sum of squares is not factorable

Example 3: Factor $6x^2 - 54$

Step 1: Factor out the Greatest Common Factor

 $= 6(x^2 - 9)$

Step 2: Factor as difference of squares

$$= 6(x-3)(x+3)$$

(2 terms) Difference of Cubes and Sum of Cubes Difference: $a^3 - b^3 = (a - b)(a^2 + ab + b^2)$ Sum: $a^3 + b^3 = (a + b)(a^2 - ab + b^2)$ Example: Factor $8x^3 + 125$ $\sqrt[3]{8x^3} = 2x$ and $\sqrt[3]{125} = 5$ so a = 2x and b = 5 $(a + b)(a^2 - ab + b^2)$ $= (2x + 5)(4x^2 - 10x + 25)$

Solve Quadratic Equations by Factoring

Example 1: Solve $7x^2 = 6x$

Step 1: Move all terms to one side equal to zero

$$7x^2 - 6x = 0$$

Step 2: Factor out the Greatest Common Factor

$$x(7x-6)=0$$

Step 3: Set each factor to zero and solve each for x

$$x = 0 7x - 6 = 0$$
$$x = 0 x = \frac{6}{7}$$
$$\left\{0, \frac{6}{7}\right\}$$

Example 2: Solve $x^2 - 3x = 18$

Step 1: Move all terms to one side equal to zero

$$x^2 - 3x - 18 = 0$$

Step 2: Factor the trinomial

$$(x-6)(x+3) = 0$$

Step 3: Set each factor to zero and solve each for x

$$x-6 = 0 x+3 = 0$$

x = 6 x = -3
{6,-3}