Functions

Input	Output
$x, t, \theta,$	y, $f(x)$, $g(t)$, $h(\theta)$,
First coordinate	Second Coordinate
Independent variable	Dependent variable
Domain is the set of all inputs	Range is the set of all outputs

A function relates a set of inputs with a set of outputs, where each input is related to *exactly one* output.

Example 1:

(every input, *x*, has only one output, *y*)

Example 3: A function: {(2,3) (3,1) (4,5)}

This is a function, since in each ordered pair (x, y), each x corresponds to only one y.

Example 4: NOT a function: {(2, 3) (2, 1) (4, 5)}

This is NOT a function, since the *x* value 2 corresponds to 3 *and* 1, so has more than one output *y*.

Vertical Line Test

– if a vertical line passes through a graph more than once, the graph is NOT a function.

Example 1:

(Any vertical line only passes through once)

(A vertical line passes through the graph more than once)

Example 2:

(the *x* value 2 has more than one output, 6 and 7)

Functions

If equation has y^2 (or *y* to any even power), or |y|, it is NOT a function.

Examples of equations that are functions:	Examples of equations that are NOT functions:
x + 2y = 4	$x + 3y^2 = 1$
$y = \frac{1}{x}$	$x = \frac{1}{y^2}$
$x^2 + y^3 = 5$	$y^4 - 5y = 8x$
y = x	x = y

Evaluating Functions

Example 1: For the function $f(x) = x^2 - 3x + 4$ Find: f(-1)Step 1: Plug -1 in for x $f(-1) = (-1)^2 - 3(-1) + 4 = 1 + 3 + 4$ f(-1) = 8Example 2: For the function $h(t) = 2t^2 - 8t + 3$ Find: h(4)

Step 1: Plug 4 in for *t*

$$h(4) = 2(4)^2 - 8(4) + 3 = 2(16) - 32 + 3 = 32 - 32 + 3$$

 $h(4) = 3$

Example 3: For the function $g(x) = 3x^2 - 5x - 2$ Find: g(a)

Step 1: Plug *a* in for *x*

 $g(a) = 3(a)^{2} - 5(a) - 2$ $g(a) = 3a^{2} - 5a - 2$

Example 4: For the function f(x) = 4x + 5Find: f(x + h)

Step 1: Plug in (x + h) for x

f(x+h) = 4(x+h) + 5

Distribute = 4x + 4h + 5

f(x+h) = 4x + 4h + 5

Evaluating Functions (difference quotient)

Example 5: For the function $f(x) = 3x^2 - 2x + 1$ Find: $\frac{f(x+h) - f(x)}{h}$ This formula is often called the difference quotient.

Step 1: Find f(x + h)

Plug in (x + h) for x in the function $f(x) = 3x^2 - 2x + 1$

$$f(x+h) = 3(x+h)^2 - 2(x+h) + 1$$

Simplify = 3(x+h)(x+h) - 2(x+h) + 1 $= 3(x^2 + 2xh + h^2) - 2x - 2h + 1$

$$f(x+h) = 3x^2 + 6xh + 3h^2 - 2x - 2h + 1$$

Step 2: Plug in f(x + h) and f(x) into $\frac{f(x + h) - f(x)}{h}$

$$\frac{f(x+h) - f(x)}{h} = \frac{(3x^2 + 6xh + 3h^2 - 2x - 2h + 1) - (3x^2 - 2x + 1)}{h}$$

Step 3: Combine like terms and simplify

$$= \frac{(3x^{2} + 6xh + 3h^{2} - 2x - 2h + 1) - (3x^{2} - 2x + 1)}{h}$$
$$= \frac{6xh + 3h^{2} - 2h}{h}$$
$$= \frac{h(6x + 3h - 2)}{h}$$

Factor

= 6x + 3h - 2

Domain and Range

Domain: the set of all inputs (what x can be).	Range: the set of all outputs (what y can be).
The domain will be all real numbers $(-\infty,\infty)$ unless t	he function has: • x in the denominator • x in a square root (or any even root)

• *x* in a logarithm

Example 1: Find the domain of the function $f(x) = x^2 + 3$

The domain is all real numbers, $(-\infty, \infty)$ any real number plugged in for *x* will get a real number as an output.

Example 2: Find the domain of the function $g(x) = \frac{x+9}{x+7}$

Step 1: Note that an expression is undefined when the denominator equals zero. x is in the denominator, so set the denominator to zero and solve for x

 $x + 7 = 0 \Rightarrow x = -7$

So the function will be undefined when x = -7

Therefore, the domain is all real numbers except x = -7

The domain in interval notation is: $(-\infty, -7) \cup (-7, \infty)$

Example 3: Find the domain of the function $h(x) = \sqrt{3 - x}$

Step 1: Note that an expression is not a real number when the taking the square root of a negative number. Since *x* is inside a square root, set the inside of the root ≥ 0 and solve for *x*.

 $3-x \ge 0 \implies -x \ge -3$ divide both sides by -1, flipping the inequality $x \le 3$ So the domain is $x \le 3$ The domain in interval notation is: $(-\infty, 3]$

Example 4: Find the domain and range of the graph

Step 1: Look at the far left and far right for domain. Step 2: Look at the lowest and highest for the range.

Note:

Use brackets [] for closed circle Use parenthesis () for open circle

One-to-One Functions

A function is one-to-one when each output(y) is related to *exactly one* input(x).

Example 1:

(every output, *y*, has only one input, *x*)

Example 2:

(the *y* value 7 has more than one input, 2 and 3)

Horizontal Line Test

– if a horizontal line passes through a graph more than once, the graph is NOT a one-to-one function.

Example 1:

A one-to-one function:

Example 2:

