Inverse Functions

An inverse function "undoes" a function, and is found by interchanging variables (*x* becomes *y*, and *y* becomes *x*).

Properties of Inverse Functions

- For a function f(x), the inverse notation for the function is $f^{-1}(x)$
- The domain of f(x) is equal to the range of $f^{-1}(x)$
- The range of f(x) is equal to the domain of $f^{-1}(x)$
- A function f(x) must be a one-to-one function in order to have an inverse $f^{-1}(x)$
- $f(f^{-1}(x)) = x$ and $f^{-1}(f(x)) = x$

Example 1: Find the inverse of the function $f(x) = 2x^3 + 1$

Step 1: Replace f(x) with y to see as an equation with variables x and y

$$y = 2x^3 + 1$$

Step 2: Interchange *x* and *y*

$$x = 2y^3 + 1$$

Step 3: Solve for *y*

 $x - 1 = 2y^{3}$ $\frac{x - 1}{2} = y^{3}$ cube root both sides. $\sqrt[3]{\frac{x - 1}{2}} = y \qquad \longrightarrow \qquad y = \sqrt[3]{\frac{x - 1}{2}}$

Step 4: Replace *y* with $f^{-1}(x)$ to write in inverse notation.

$$f^{-1}(x) = \sqrt[3]{\frac{x-1}{2}}$$

3

 $f(x) = 2x^3 + 1$

Example 2: Verify that *f* and *g* are inverses of each other,

given that
$$f(x) = \frac{x-9}{4}$$
, $g(x) = 4x + 9$

Step 1: For inverse functions, $f(f^{-1}(x)) = x$ and $f^{-1}(f(x)) = x$

So to verify the functions f and g are inverses, show that f(g(x)) = x and g(f(x)) = x

$$f(g(x)) = \frac{(4x+9)-9}{4} = \frac{4x}{4} = x$$

$$g(f(x)) = 4\left(\frac{x-9}{4}\right) + 9 = x - 9 + 9 = x$$

Therefore, the functions f and g are inverses of each other.

Example 3: Assume *f* is a one-to-one function with domain: $(-\infty, \infty)$ If f(7) = 4, find $f^{-1}(4)$

Step 1: For f(7) = 4, the input is x = 7 and the output is y = 4So for inverse, the input becomes the output, and output becomes the input. Therefore for $f^{-1}(4)$, when the input is 4, the output is 7 $f^{-1}(4) = 7$

Example 4: Use the given table for y = f(x) to complete a table for $y = f^{-1}(x)$

y = f(x)	
x	у
1	5
-2	0
6	6
1	-3

x	у
5	1
0	-2
6	6
-3	1

►

 $y = f^{-1}(x)$

Example 5: Draw the graph of $g^{-1}(x)$ on the same axis as the graph of the function g(x) given below:

To draw the graph of the inverse...

Step 1: Note the points on the given graph of g(x) are: (0, -1) (1, 2) (2, 5)

Step 2: Find the inverse points by interchanging x and y for each point. The inverse points are: (-1, 0) (2, 1) (5, 2)

Step 3: Plot and connect the points to graph the inverse $g^{-1}(x)$