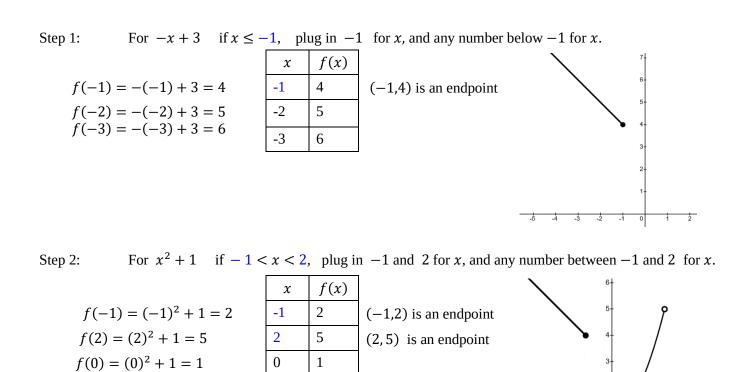

Piecewise Functions

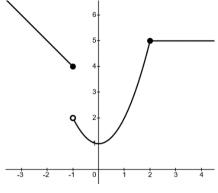
Piecewise function – a function defined by two or more equations, each with different domains.

Example: A piecewise function with 2 pieces:


Example: Find the following: For the function:

- a) f(-2)b) f(-1) $f(x) = \begin{cases} 2x + 4 & \text{if } x \le -1 \\ 5 & \text{if } -1 < x < 2 \\ x^2 + 1 & \text{if } x \ge 2 \end{cases}$
- c) *f*(0)
- d) *f*(5)
- a) -2 is less than -1, so plug -2 into 2x + 4 f(-2) = 2(-2) + 4 = -4 + 4 = 0f(-2) = 0
- b) -1 is equal to -1, so plug -1 into 2x + 4 f(-1) = 2(-1) + 4 = -2 + 4 = 2f(-1) = 2
- c) 0 is between -1 and 2, so plug 0 into 5 There is no *x* variable to plug in, so the function value remains 5 f(0) = 5
- d) 5 is greater than 2, so plug 5 into $x^2 + 1$ $f(5) = (5)^2 + 1 = 25 + 1 = 26$ f(5) = 26

Graphing Piecewise Functions


Example: Graph the function:

$$f(x) = \begin{cases} -x+3 & \text{if } x \le -1 \\ x^2+1 & \text{if } -1 < x < 2 \\ 5 & \text{if } x \ge 2 \end{cases}$$

For 5 if $x \ge 2$, plug in 2 for x, and any number above 2 for x. Step 3:

	x	f(x)		\mathbf{X}	1	
f(2) = 5	2	5	(2, 5) is an endpoint		6-	
f(3) = 5	3	5		\backslash	5-	/
f(4) = 5	4	5		•	4	
					3-	

0

-3

-2 -1 2

3

Graph of all pieces of the function.