Rational Functions

A rational function is a function that is a quotient of two polynomials (polynomials can include monomials).

Examples of rational functions:
$$f(x) = \frac{1}{x}$$
 $y = \frac{2x-1}{x+3}$ $g(x) = \frac{x-3}{5x^2+31x+6}$

Asymptotes

Asymptote – a line that a curve approaches, as either the x or y coordinate approaches infinity or negative infinity. (Asymptotes often show up in graphs of rational functions)

Vertical Asymptotes

To find vertical asymptotes - factor and cancel if possible, then set denominator to zero and solve for x.

Example: Find vertical asymptotes for the function $f(x) = \frac{x+7}{2-x}$

Step 1: Nothing can be factored or cancelled, so set denominator to zero and solve for *x*

Horizontal Asymptotes

Finding horizontal asymptotes:

- If the degree of the numerator is 1 degree larger than the degree of the denominator, the horizontal asymptote does not exist (there is an oblique/slant asymptote instead).
- If degree of the numerator is less than the degree of the denominator, the horizontal asymptote is zero.
- If the degree of the numerator is the same as the degree of the denominator, the horizontal asymptote is the ratio of the leading coefficients.

Oblique (Slant) Asymptotes

To find oblique asymptotes, divide numerator by the denominator to get a linear equation.

Example: Find the horizontal or oblique asymptote of the function $f(x) = \frac{x^2 + 4x - 1}{x + 3}$

Step 1: Note that the numerator is 1 degree larger than the denominator, so there is no horizontal asymptote, instead there is an oblique asymptote.

Step 2: Divide using long division, or synthetic division

Dividing using synthetic division, $x + 3 = 0 \Rightarrow x = -3$, so divide by -3

Example: Find all asymptotes, *x* and *y*-intercepts and domain of the function

$$f(x) = \frac{x+3}{2x^2 - 5x - 3}$$

Step 1: Factor and cancel if possible

$$\frac{x+3}{2x^2 - 5x - 3} = \frac{x+3}{(2x+1)(x-3)}$$
 (Nothing cancels out)

Step 2: Find vertical asymptotes by setting denominator to zero and solving for *x*

$$(2x + 1)(x - 3) = 0$$
 Solving each factor for *x* gets $x = -\frac{1}{2}$, $x = 3$ Which are the vertical asymptotes.

Step 3: Find horizontal asymptotes by looking at the degree of the numerator and denominator

$$\frac{x+3}{2x^2-5x-3}$$
 The degree is higher on the bottom,
so the horizontal asymptote is $y = 0$

Step 4: Find the *y*-intercepts by plugging zero in for *x* in the function

$$\frac{x+3}{2x^2-5x-3} = \frac{(0)+3}{2(0)^2-5(0)-3} = \frac{3}{-3} = -1$$
 So the *y*-intercept is (0, -1)

Step 5: Find the *x*-intercepts by setting the function equal to zero

$$0 = \frac{x+3}{2x^2 - 5x - 3}$$
 Multiply both sides by denominator to cancel fractions
$$\left(0 = \frac{x+3}{2x^2 - 5x - 3}\right) \cdot \frac{2x^2 - 5x - 3}{1} \Rightarrow 0 = x+3 \Rightarrow x = -3$$

So the *x*-intercept is (-3, 0)

MathTutorNotes.com