
Slope of a Line

The slope is a measure of the steepness and direction(negative or positive) of a line.

Slope is often shown as the variable m

Slope:	$m = \frac{y_2 - y_1}{z_1 - y_1}$	_ change in y	rise
	$m^{-} x_2 - x_1$	$\frac{1}{change in x}$	$=\overline{run}$

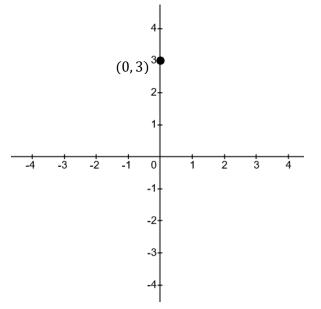
Equation of a Line (Linear Equation)

MathTutorNotes.com

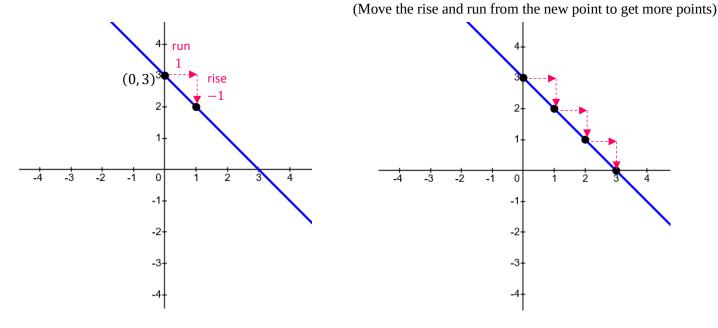
Graphing using the Slope and y-intercept

To graph a linear equation, using slope and *y*-intercept:

- 1) Solve the equation for *y* to put it in y = mx + b form if necessary.
- 2) Identify the slope and *y*-intercept.
- 2) Plot the *y*-intercept.
- 3) Starting at *y*-intercept point, move the rise and run to get another point.
- 4) You can get more points from moving the rise and run from any existing point.


Example: Graph the equation y = -x + 3

Step 1: The equation is already in y = mx + b form, so determine the slope and *y*-intercept


The slope is m = -1 To see as rise and run, put the number over 1. So $m = \frac{-1}{1} = \frac{rise}{run}$

The *y*-intercept is 3, and as a point (0, 3)

Step 2: Plot the *y*-intercept

Step 3: From the *y*-intercept, move the rise and run of the slope to get another point, and connect them.

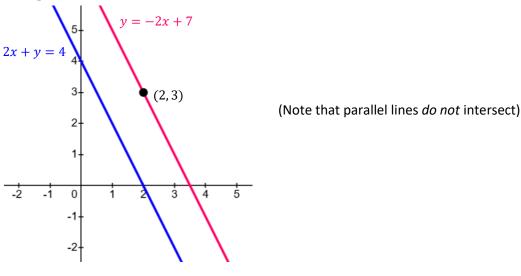
MathTutorNotes.com

Forms and Formulas

m = slope, $b = y$ -intercept				
• Slope: $m = \frac{y_2 - y_1}{x_2 - x_1}$ Parallel lines have the same slope Perpendicular lines have the opposite slope (negative reciprocal) $\frac{a}{b} \rightarrow -$				
• Slope-Intercept Form: $y = mx + b$	To find equation, if you have a <i>y</i> -intercept and slope, plug in to slope-intercept form.			
• Point-Slope Form: $y - y_1 = m(x - x_1)$	To find equation, if you have a random point and a slope, plug in to point-slope form.			
• Standard Form: $Ax + By = C$				

Writing Equations

Example 1: Write an equation in slope-intercept form that passes through the point (2,3) and is *parallel* to the equation 2x + y = 4


Step 1: Find the slope of the given equation by writing the equation in slope-intercept form

 $2x + y = 4 \implies y = -2x + 4$ So we can see the slope of the given equation is m = -2Since we want an equation that is parallel, we use the same slope.

Step 2: Plug in the given point and the slope into the point-slope formula and solve for *y*

 $y - y_1 = m(x - x_1)$ $y - 3 = -2(x - 2) \Rightarrow y - 3 = -2x + 4 \Rightarrow y = -2x + 7$

Graph to confirm:

Example 2: Write an equation in slope-intercept form

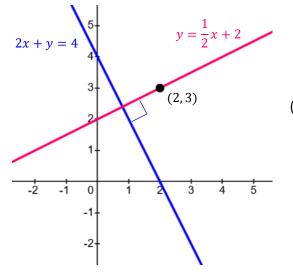
that passes through the point (2, 3)

and is *perpendicular* to the equation 2x + y = 4

Step 1: Find the slope of the given equation by writing the equation in slope-intercept form

 $2x + y = 4 \implies y = -2x + 4$ So we can see the slope of the given equation is m = -2

Since we want an equation that is perpendicular, find the negative reciprocal of -2


$$-2 = \frac{-2}{1}$$
 Flip and change sign to get perpendicular slope $-\frac{2}{1} \rightarrow \frac{1}{2}$

So the perpendicular slope is $m = \frac{1}{2}$

Step 2: Plug in the given point and perpendicular slope into the point-slope formula and solve for *y*

$$y - y_1 = m(x - x_1)$$

 $y - 3 = \frac{1}{2}(x - 2) \implies y - 3 = \frac{1}{2}x - 1 \implies y = \frac{1}{2}x + 2$

Graph to confirm:

(Note that perpendicular lines intersect at a right angle)