Continuity

A function is *discontinuous* at some *x* value if:

1) The *x* value makes the function undefined.

2) The graph is disconnected, has a vertical asymptote, or open circle at the x value.

Types of Discontinuities

Differentiation

3 ways a function is not differentiable:

Derivative Notation

There are several notations for derivative, which all mean the same thing:

f'(x) (f prime of x) f' (f prime) y' (y prime) $\frac{dy}{dx} \text{ (derivative of y in terms of x) (dy, dx)}$

For dy/dx notation, the *y* can be replaced by whatever function you are finding the derivative of.

Example: For the function $f(x) = x^2 + 3x$ the derivative is f'(x) = 2x + 3

In $\frac{dy}{dx}$ notation, the derivative can be shown as: $\frac{d(x^2 + 3x)}{dx} = 2x + 3$ or $\frac{d}{dx}(x^2 + 3x) = 2x + 3$

which is saying, the derivative of $x^2 + 3x$ in terms of x is equal to 2x + 3.

The derivative could also be shown as: $\frac{dy}{dx} = 2x + 3$