You will often use these root, exponent and fraction properties to simplify before finding the derivative:

$$\sqrt{x} = x^{1/2}$$

$$\sqrt[n]{x^m} = x^{m/n}$$

$$\frac{1}{x} = x^{-1}$$

$$\frac{1}{x^n} = x^{-n}$$

$$\frac{1}{x} = x^{-1} \qquad \qquad \frac{1}{x^n} = x^{-n} \qquad \qquad \frac{a+c}{b} = \frac{a}{b} + \frac{c}{b}$$

	Rule:	Example:
Constant Rule	Function: $f(x) = c$	Function: $f(x) = 7$
	Derivative: $f'(x) = 0$	Derivative: $f'(x) = 0$
Power Rule:	Function: $f(x) = x^n$	Function: $f(x) = x^4$
	Derivative: $f'(x) = nx^{n-1}$	Derivative: $f'(x) = 4x^3$
	Function: $f(x) = x$	
	Derivative: $f'(x) = 1$	
Constant Multiple Rule:	Function: $f(x) = cx^n$	Function: $f(x) = 7x^4$
	Derivative: $f'(x) = c \cdot nx^{n-1}$	Derivative: $f'(x) = 28x^3$
	Function: $f(x) = cx$	Function: $f(x) = 6x$
	Derivative: $f'(x) = c$	Derivative: $f'(x) = 6$
Sum and Difference Rule:	Function: $f(x) = u \pm v$	Function: $f(x) = 3x^6 - 4x$
	Derivative: $f'(x) = u' \pm v'$	Derivative: $f'(x) = 18x^5 - 4$
Product Rule:	Function: $f(x) = uv$	Function: $f(x) = (x^2 + x)(3x + 1)$
	Derivative:	Derivative:
	f'(x) = uv' + vu'	$f'(x) = (x^2 + x)(3) + (3x + 1)(2x + 1)$
	or	$= 3x^2 + 3x + 6x^2 + 3x + 2x + 1$
	f'(x) = u'v + v'u	$=9x^2+8x+1$
Quotient Rule:	Function: $f(x) = \frac{u}{v}$	Function: $f(x) = \frac{5x-2}{4x+3}$
	Derivative:	Derivative:
	$f'(x) = \frac{vu' - uv'}{v^2}$	$f'(x) = \frac{(4x+3)(5) - (5x-2)(4)}{(4x+3)^2}$
	or	20x + 15 - (20x - 8)
	$f'(x) = \frac{u'v - v'u}{v^2}$	$= \frac{20x + 15 - (20x - 8)}{(4x + 3)^2}$ $= \frac{23}{(4x + 3)^2}$
General Power Rule:	Function: $f(x) = u^n$	Function: $f(x) = (2x^3 - 7x)^4$
	Derivative: $f'(x) = nu^{n-1} \cdot u'$	Derivative: $f'(x) = 4(2x^3 - 7x)^3(6x^2 - 7)$

	Rule:		Example	:
Exponential Derivatives:	Function:	$f(x)=e^x$		
	Derivative:	$f'(x) = e^x$		
	Function:	$f(x) = e^u$	Function:	$f(x) = e^{4x^2 - 3}$
	Derivative:	$f'(x) = e^u \cdot u'$	Derivative:	$f'(x) = e^{4x^2 - 3}(8x)$ $= 8xe^{4x^2 - 3}$
		$f(x) = b^u$	Function:	$f(x) = 5^{2x-3}$
	Derivative:	$f'(x) = (lnb)b^u \cdot u'$	Derivative:	$f'(x) = (ln5)5^{2x-3}(2)$ $= 2(ln5)5^{2x-3}$
Logarithm Derivatives:	Function:	$f(x) = \ln(x)$		
	Derivative:	$f'(x) = \frac{1}{x}$		
	Function:	$f(x) = \ln(u)$	Function:	$f(x) = \ln(-3x^2 + 5x)$
	Derivative:	$f'(x) = \frac{1}{u} \cdot u'$	Derivative:	$f'(x) = \frac{1}{-3x^2 + 5x}(-6x + 5)$
		$=\frac{u'}{u}$		$=\frac{-6x+5}{-3x^2+5x}$
	Function:	$f(x) = \log_b(u)$	Function:	$f(x) = \log_5(4x^3 - 1)$
	Derivative:	$f'(x) = \frac{1}{(lnb)u} \cdot u'$	Derivative:	$f'(x) = \frac{1}{(\ln 5)(4x^3 - 1)} \cdot 12x^2$
		$=\frac{u'}{(lnb)u}$		$=\frac{12x^2}{\ln 5(4x^3-1)}$
Absolute Value	Function:	f(x) = u	Function:	$f(x) = 2x^3 $
Derivative:	Derivative:	$f'(x) = \frac{u}{ u } \cdot u'$	Derivative:	$f'(x) = \frac{2x^3}{ 2x^3 } \cdot 6x^2$
				$=\frac{2x^3}{2 x^3 }\cdot 6x^2$
				$=\frac{6x^5}{ x^3 }$

	Rule:	Example:
Trig Derivatives:	Function: $f(x) = \sin x$ Derivative: $f'(x) = \cos x$	
	Function: $f(x) = \sin u$ Derivative: $f'(x) = (\cos u)u'$	Function: $f(x) = \sin(4x^2)$ Derivative: $f'(x) = \cos(4x^2) \cdot 8x$ $= 8x \cos(4x^2)$
	Function: $f(x) = \cos x$ Derivative: $f'(x) = -\sin x$	
	Function: $f(x) = \cos u$ Derivative: $f'(x) = -(\sin u)u'$	Function: $f(x) = \cos(x^3 - 4x)$ Derivative: $f'(x) = -(\sin(x^3 - 4x))(3x^2 - 4)$ $= -(3x^2 - 4)(\sin(x^3 - 4x))$
	Function: $f(x) = \tan x$ Derivative: $f'(x) = \sec^2 x$	
	Function: $f(x) = \tan u$ Derivative: $f'(x) = (\sec^2 u)u'$	Function: $f(x) = \tan(5x^2 + 1)$ Derivative: $f'(x) = (\sec^2(5x^2 + 1)) \cdot 10x$ $= 10x(\sec(5x^2 + 1))$
	Function: $f(x) = \cot x$ Derivative: $f'(x) = -\csc^2 x$	
	Function: $f(x) = \cot u$ Derivative: $f'(x) = -(\csc^2 u)u'$	Function: $f(x) = \cot(9x)$ Derivative: $f'(x) = -(\csc^2(9x)) \cdot 9$ $= -9\csc^2(9x)$
	Function: $f(x) = \sec x$ Derivative: $f'(x) = \sec x \tan x$	
	Function: $f(x) = \sec u$ Derivative: $f'(x) = (\sec u \tan u)u'$	Function: $f(x) = \sec(7x^2)$ Derivative: $f'(x) = (\sec(7x^2)\tan(7x^2)) \cdot 14x$ $= 14x(\sec(7x^2)\tan(7x^2))$
	Function: $f(x) = \csc x$ Derivative: $f'(x) = -\csc x \cot x$	
	Function: $f(x) = \csc u$ Derivative: $f'(x) = -(\csc u \cot u)u'$	Function: $f(x) = \csc(x^3)$ Derivative: $f'(x) = -(\csc(x^3)\cot(x^3)) \cdot 3x^2$ $= -3x^2(\csc(x^3)\cot(x^3))$

	Dulas		Evenneles	
	Rule:		Example:	
Inverse Trig Derivatives:	Function:	$f(x) = \sin^{-1} x$		
	Derivative:	$f'(x) = \frac{1}{\sqrt{1 - x^2}}$		
	Function:	$f(x) = \sin^{-1} u$	Function: $f(x) = \sin^{-1}$	$(5x^6)$
	Derivative:	$f'(x) = \frac{u'}{\sqrt{1 - u^2}}$	Derivative: $f'(x) = \frac{3}{\sqrt{1 - x}}$	$\frac{80x^5}{-25x^{12}}$
	Function:	$f(x) = \cos^{-1} x$		
	Derivative:	$f'(x) = -\frac{1}{\sqrt{1-x^2}}$		
	Function:	$f(x) = \cos^{-1} u$	Function: $f(x) = \cos^{-1}$	$(5x^6)$
	Derivative:	$f'(x) = \frac{-u'}{\sqrt{1 - u^2}}$	Derivative: $f'(x) = \frac{-1}{\sqrt{1 - x^2}}$	$\frac{30x^5}{-25x^{12}}$
	Function:	$f(x) = \tan^{-1} x$		
	Derivative:	$f'(x) = \frac{1}{1+x^2}$		
	Function:	$f(x) = \tan^{-1} u$	Function: $f(x) = \tan^{-1}$	$(3x^2)$
	Derivative:	$f'(x) = \frac{u'}{1 + u^2}$	Derivative: $f'(x) = \frac{6x}{1+6x}$	$\frac{c}{\partial x^4}$
	Function:	$f(x) = \cot^{-1} u$	Function: $f(x) = \cot^{-1}$	$(3x^2)$
	Derivative:	$f'(x) = \frac{-u'}{1+u^2}$	Derivative: $f'(x) = \frac{-6}{1+9}$	$\frac{x}{\partial x^4}$
	Function:	$f(x) = \sec^{-1} u$	Function: $f(x) = \sec^{-1}$	$(2x^4)$
	Derivative:	$f'(x) = \frac{u'}{ u \sqrt{u^2 - 1}}$	Derivative: $f'(x) = \frac{1}{ 2x^4 }$	$ \begin{array}{r} 8x^3 \\ \sqrt{4x^8 - 1} \\ 8x^3 \\ \sqrt{4x^8 - 1} \end{array} $
			_,,	
	Function:	$f(x) = \csc^{-1} u$	Function: $f(x) = \csc^{-1}$	$(2x^4)$
	Derivative:	$f'(x) = \frac{-u'}{ u \sqrt{u^2 - 1}}$	Derivative: $f'(x) = \frac{1}{ 2x^4 }$ $= \frac{1}{2x^4}$	
				$\frac{-4}{\sqrt{4x^8-1}}$