Absolute Maximum and Minimum

Example: Find the absolute max and min of the function on the given interval. $f(x) = x^3 - 6x^2 + 5$, [-3,5]

Step 1: Find the derivative

$$f'(x) = 3x^2 - 12x$$

Step 2: Set the derivative to zero and solve for x to get critical numbers

$$3x^{2} - 12x = 0$$

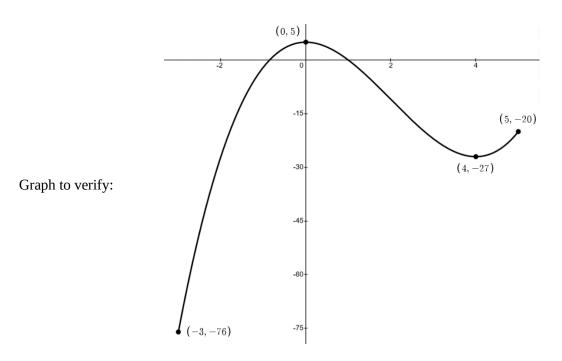
$$3x(x - 4) = 0$$
Critical numbers are $x = 0, 4$

Step 3: Plug critical numbers and interval bounds into the original function

and see which get the smallest (min) and largest (max) values.

f(-3) = -76, f(0) = 5, f(4) = -27, f(5) = -20

Therefore, the absolute max value is f(0) = 5; The absolute min value is f(-3) = -76



First Derivative Test

Example: Find the intervals of increase and decrease, and local max and min of the following function.

 $f(x) = x^3 - 6x^2 + 9x - 10$

Step 1: Find the derivative

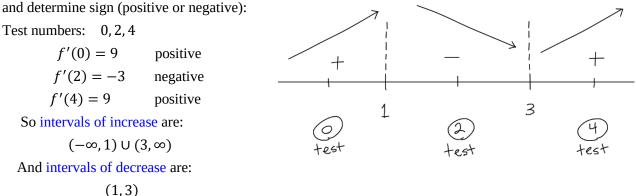
 $f'(x) = 3x^2 - 12x + 9$

Step 2: Set the derivative to zero and solve for x to get critical numbers

 $3x^{2} - 12x + 9 = 0$ $3(x^{2} - 4x + 3) = 0$ 3(x - 3)(x - 1) = 0 Critical numbers are x = 1, 3

Step 3: Use number line to test between critical numbers for increase/decrease

Plug test points into the derivative

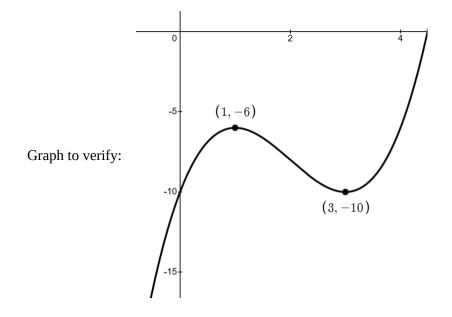


Step 4: Plug critical numbers into the original function

The number line shows there is a local max located at x = 1 and local min located at x = 3, plug in the critical values in the original function to get the values of the local max and min

f(1) = -6, f(3) = -10

Therefore, the local max value is f(1) = -6 and local min value is f(3) = -10



Second derivative: the derivative of the 1st derivative.

Function:	Derivative:	Second Derivative:
$f(x) \rightarrow$	$f'(x) \rightarrow$	$f^{\prime\prime}(x)$
Example: Find the second derivative of the function		
Function:	Derivative:	Second Derivative:
$f(x) = 2x^3$	$f'(x) = 6x^2$	$f^{\prime\prime}(x) = 12x$

Second Derivative can be used to find:

- Points of inflection
- Concavity
- Local max and min (second derivative test)
- Acceleration
- Point of diminishing returns

Concavity and Points of Inflection

Example: Find the intervals of concavity and the inflection points $f(x) = x^4 - 4x^3 + 2$

Step 1: Find the 1st and 2nd derivative

$$f'(x) = 4x^3 - 12x^2 \qquad \qquad f''(x) = 12x^2 - 24x$$

Step 2: Set the 2nd derivative to zero and solve for x to find the 2nd order critical numbers

$$12x^2 - 24x = 0$$

 $12x(x - 2) = 0$ $12x = 0$, $x - 2 = 0$ So the 2nd order critical numbers are $x = 0$, $x = 2$

+

0

Step 3: Use number line to test in between critical numbers for concave up or concave down

Plug test numbers into 2nd derivative and determine the sign (positive or negative)

Test numbers: -1, 1, 3

f''(-1) = 36 positive f''(1) = -12 negative f''(3) = 36 positive

So the function is concave up on the intervals:

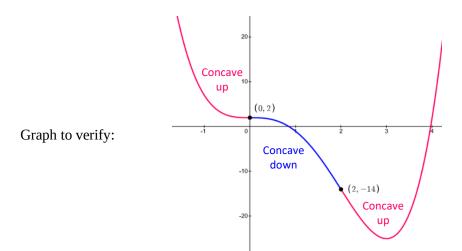
$$(-\infty,0) \cup (2,\infty)$$

And the function is concave down on the interval:

(0, 2)

Step 4: Plug 2nd order critical numbers into original function to find inflection points

f(0) = 2, f(2) = -14 Therefore, the points of inflection are (0, 2) and (2, -14)



+

Э

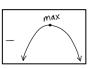
Second Derivative Test

The second derivative can be used to find the local maximum and minimum of a function

Let c = critical number from the 1st derivative

If f''(c) is positive, then f has a local minimum at c

If f''(c) is negative, then *f* has a local maximum at *c*



If f''(c) = 0, then the 2nd derivative test gives no information about the critical number, use 1st derivative test instead

Example: Find all local extrema of the function using the Second Derivative Test $f(x) = x^3 - 3x^2 + 3$

Step 1: Find the 1st derivative and 2nd derivative

 $f'(x) = 3x^2 - 6x \qquad f''(x) = 6x - 6$

Step 2: Set the 1st derivative to zero and solve for x to find the critical numbers

$$3x^2 - 6x = 0$$
 $3x(x - 2) = 0$
 $3x = 0$ $x - 2 = 0$, so the critical numbers are $x = 0$, $x = 2$

Step 3: Plug the critical numbers into the 2nd derivative

f''(0) = -6 Negative, so a local maximum is located at x = 0f''(2) = 6 Positive, so a local minimum is located at x = 2

Step 4: Plug the critical numbers into the original function to determine the values of the local max and min

$$f(0) = 3$$
 so $(0, 3)$ is a local maximum
 $f(2) = -1$ so $(2, -1)$ is a local minimum