Angles

Initial side – fixed side where angle starts. **Terminal side** – rotated side where angle ends.

Standard Position – initial side is on the positive *x*-axis.

Central Angle – angle whose vertex is at the center of a circle.

Formulas:
where $r = radius, \ \theta = angle in radians, \ t = timeArc length:<math>s = r\theta$ Arc a of sector: $A = \frac{1}{2}r^2\theta$ Linear speed:
(speed along straight path) $v = \frac{s}{t}$ Angular speed:
(speed along circular path) $\omega = \frac{\theta}{t}$
 ω is in radians per unit time

Measures of Angles

1 revolution around a circle = 2π radians.

 2π radians = 360°

Convert degrees to radian: multiply by
$$\frac{\pi}{180}$$

Example: 90° = 90 $\cdot \frac{\pi}{180} = \frac{\pi}{2}$ radians.

Convert radian to degree: multiply by $\frac{180}{\pi}$				
Example:	$\frac{\pi}{6}$	radians	$=\frac{\pi}{6} \cdot \frac{180}{\pi} = \frac{180}{6} = 30^{\circ}$	

Positive angles move counterclockwise.

Negative angles move clockwise.

Co-terminal angles have the same initial and terminal side. **Example:** 45° and -315° are co-terminal angles.

Quadrantal angles:			
In degrees:	90°, 180°, 270°, 360° 90 <i>k</i>		
In radian:	$\frac{\pi}{2}, \pi, \frac{3\pi}{2}, 2\pi \dots \frac{\pi}{2}k$		

For some angle θ in standard position,

its **reference angle** is the positive acute angle formed by the terminal side and the horizontal axis.

Examples:

Reference angle= $180^\circ - 120^\circ = 60^\circ$

Reference angle= $225^\circ - 180^\circ = 45^\circ$ Reference angle= $225^\circ - 180^\circ = 45^\circ$

Reference angle= $360^{\circ} - 310^{\circ} = 50^{\circ}$